Search This Blog

Monday, August 19, 2019

Mekanisme BIOREMEDIASI


Mikrobiologi Lingkungan (Bioremediasi)
 
 
BIOREMEDIASI


Bioremediasi berasal dari dua kata yaitu bio dan remediasi yang dapat diartikan sebagai proses dalam menyelesaikan masalah. Menurut Munir (2006), bioremediasi merupakan pengembangan dari bidang bioteknologi lingkungan dengan memanfaatkan proses biologi dalam mengendalikan pencemaran. Menurut Sunarko (2001), bioremediasi mempunyai potensi untuk menjadi salah satu teknologi lingkungan yang bersih, alami, dan paling murah untuk mengantisipasi masalah-masalah lingkungan.
Menurut Ciroreksoko(1996), bioremediasi diartikan sebagai proses pendegradasian bahan organik berbahaya secara biologis menjadi senyawa lain seperti karbondioksida (CO2), metan, dan air. Sedangkan menurut Craword (1996), bioremediasi merujuk pada penggunaan secara produktif proses biodegradatif untuk menghilangkan atau mendetoksi polutan (biasanya kontaminan tanah, air dan sedimen) yang mencemari lingkungan dan mengancam kesehatan masyarakat.

Bioremediasi adalah pemanfaatan mikroorganisme (khamir, fungi (mycoremediasi), yeast, alga dan bakteri yang berfungsi sebagai agen bioremediator) untuk membersihkan senyawa pencemar (polutan) dari lingkungan. Bioremediasi juga dapat dikatakan sebagai proses penguraian limbah organik/anorganik polutan secara biologi dalam kondisi terkendali. bioremediasi juga dapat pula memanfaatkan tanaman air. Tanaman air memiliki kemampuan secara umum untuk menetralisir komponen-komponen tertentu di dalam perairan dan sangat bermanfaat dalam proses pengolahan limbah cair ( misalnya menyingkirkan kelebihan nutrien, logam dan bakteri patogen). Penggunaan tumbuhan ini biasa dikenal dengan istilah fitoremediasi. Bioremediasi bertujuan untuk memecah atau mendegradasi zat pencemar menjadi bahan yang kurang beracun atau tidak beracun (karbon dioksida dan air) atau dengan kata lain mengontrol,  mereduksi atau bahkan mereduksi bahan pencemar dari lingkungan.

Mekanisme

Pada proses ini terjadi biotransformasi atau biodetoksifikasi senyawa toksik menjadi senyawa yang kurang toksik atau tidak toksik. Saat bioremediasi terjadi, enzim-enzim yang diproduksi oleh mikroorganisme memodifikasi polutan beracun dengan mengubah struktur kimia polutan tersebut, sebuah peristiwa yang disebut biotransformasi. Pada banyak kasus, biotransformasi berujung pada biodegradasi, dimana polutan beracun terdegradasi, strukturnya menjadi tidak kompleks, dan akhirnya menjadi metabolit yang tidak berbahaya dan tidak beracun. Pendekatan umum untuk meningkatkan kecepatan biotransformasi/ biodegradasi adalah dengan cara:
1)      seeding, mengoptimalkan populasi dan aktivitas mikroba indigenous (bioremediasi instrinsik) dan/atau penambahan mikroorganisme exogenous (bioaugmentasi)         
2)      feeding, memodifikasi lingkungan dengan penambahan nutrisi (biostimulasi) dan aerasi (bioventing).
Proses utama pada bioremediasi adalah biodegradasi, biotransformasi dan biokatalis.
Menurut Dr. Anton Muhibuddin, salah satu mikroorganisme yang berfungsi sebagai bioremediasi adalah jamur vesikular arbuskular mikoriza (vam). Jamur vam dapat berperan langsung maupun tidak langsung dalam remediasi tanah. Berperan langsung, karena kemampuannya menyerap unsur logam dari dalam tanah dan berperan tidak langsung karena menstimulir pertumbuhan mikroorganisme bioremediasi lain seperti bakteri tertentu, jamur dan sebagainya.
Sejak tahun 1900an, orang-orang sudah menggunakan mikroorganisme untuk mengolah air pada saluran air. Saat ini, bioremediasi telah berkembang pada perawatan limbah buangan yang berbahaya (senyawa-senyawa kimia yang sulit untuk didegradasi), yang biasanya dihubungkan dengan kegiatan industri. Yang termasuk dalam polutan-polutan ini antara lain logam-logam berat, petroleum hidrokarbon, dan senyawa-senyawa organik terhalogenasi seperti pestisida, herbisida, dan lain-lain.
Banyak aplikasi-aplikasi baru menggunakan mikroorganisme untuk mengurangi polutan yang sedang diujicobakan. Bidang bioremediasi saat ini telah didukung oleh pengetahuan yang lebih baik mengenai bagaimana polutan dapat didegradasi oleh mikroorganisme, identifikasi jenis-jenis mikroba yang baru dan bermanfaat, dan kemampuan untuk meningkatkan bioremediasi melalui teknologi genetik. Teknologi genetik molekular sangat penting untuk mengidentifikasi gen-gen yang mengkode enzim yang terkait pada bioremediasi. Karakterisasi dari gen-gen yang bersangkutan dapat meningkatkan pemahaman kita tentang bagaimana mikroba-mikroba memodifikasi polutan beracun menjadi tidak berbahaya.

Strain atau jenis mikroba rekombinan yang diciptakan di laboratorium dapat lebih efisien dalam mengurangi polutan. Mikroorganisme rekombinan yang diciptakan dan pertama kali dipatenkan adalah bakteri "pemakan minyak". Bakteri ini dapat mengoksidasi senyawa hidrokarbon yang umumnya ditemukan pada minyak bumi. Bakteri tersebut tumbuh lebih cepat jika dibandingkan bakteri-bakteri jenis lain yang alami atau bukan yang diciptakan di laboratorium yang telah diujicobakan. Akan tetapi, penemuan tersebut belum berhasil dikomersialkan karena strain rekombinan ini hanya dapat mengurai komponen berbahaya dengan jumlah yang terbatas. Strain inipun belum mampu untuk mendegradasi komponen-komponen molekular yang lebih berat yang cenderung bertahan di lingkungan.

Pada bioremediasi microbial terdapat faktor-faktor utama yang menentukan: yaitu Populasi mikroba, Konsentrasi nutrien, Pasokan oksigen, Suhu dan kelembaban. 
Jenis-jenis bioremediasi
Jenis-jenis bioremediasi dibagi menjadi 2 yaitu:
a.      Bioremediasi yang melibatkan mikroba terdapat 3 macam yaitu
1.      Biostimulasi
Biostimulasi adalah memperbanyak dan mempercepat pertumbuhan mikroba yang sudah ada di daerah tercemar dengan cara memberikan lingkungan pertumbuhan yang diperlukan, yaitu penambahan nutrien dan oksigen. Jika jumlah mikroba yang ada dalam jumlah sedikit, maka harus ditambahkan mikroba dalam konsentrasi yang tinggi sehingga bioproses dapat terjadi. Mikroba yang ditambahkan adalah mikroba yang sebelumnya diisolasi dari lahan tercemar kemudian setelah melalui proses penyesuaian di laboratorium di perbanyak dan dikembalikan ke tempat asalnya untuk memulai bioproses. Namun sebaliknya,  jika kondisi yang dibutuhkan tidak terpenuhi, mikroba akan tumbuh dengan lambat atau mati. Secara umum kondisi yang diperlukan ini tidak dapat ditemukan di area yang tercemar.


2.      Bioaugmentasi
Bioaugmentasi merupakan penambahan produk mikroba komersial ke dalam limbah cair untuk meningkatkan efisiensi dalam pengolahan limbah secara biologi. Cara ini paling sering digunakan dalam menghilangkan kontaminasi di suatu tempat. Hambatan mekanisme ini yaitu sulit untuk mengontrol kondisi situs yang tercemar agar mikroba dapat berkembang dengan optimal. Selain itu mikroba perlu beradaptasi dengan lingkungan tersebut (Uwityangyoyo, 2011). Menurut Munir (2006), dalam beberapa hal, teknik bioaugmentasi juga diikuti dengan penambahan nutrien tertentu. Para ilmuwan belum sepenuhnya mengerti seluruh mekanisme yang terkait dalam bioremediasi, dan mikroorganisme yang dilepaskan ke lingkungan yang asing kemungkinan sulit untuk beradaptasi.
3.      Bioremediasi Intrinsik

Bioremediasi jenis ini terjadi secara alami (tanpa campur tangan manusia) dalam air atau tanah yang tercemar.

b.      Bioremediasi berdasarkan lokasi terdapat 2 macam yaitu:
1.      In situ : dapat dilakukan langsung di lokasi tanah tercemar (proses bioremediasi yang digunakan berada pada tempat lokasi limbah tersebut). Proses bioremadiasi in situ pada lapisan surface juga ditentukan oleh faktor bio-kimiawi dan hidrogeologi.
2.      Ex situ : bioremediasi yang dilakukan dengan mengambil limbah tersebut lalu ditreatment ditempat lain, setelah itu baru dikembalikan ke tempat asal.  Lalu diberi perlakuan khusus dengan memakai mikroba.  Bioremediasi ini bisa lebih cepat dan mudah dikontrol dibanding in-situ, ia pun mampu me-remediasi jenis kontaminan dan jenis tanah yang lebih beragam.
Mikroorganisme akan mendegradasi zat pencemar atau polutan menjadi bahan yang kurang beracun atau tidak beracun. Polutan dapat dibedakan menjadi dua yaitu bahan pencemar organik dan sintetik (buatan). Bahan pencemar dapat dibedakan berdasarkan kemampuan terdegradasinya di lingkungan yaitu :
a. Bahan pencemar yang mudah terdegradasi (biodegradable pollutant), yaitu bahan yang mudah terdegradasi di lingkungan dan dapat diuraikan atau didekomposisi, baik secara alamiah yang dilakukan oleh dekomposer (bakteri dan jamur) ataupun yang disengaja oleh manusia, contohnya adalah limbah rumah tangga. Jenis polutan ini akan menimbulkan masalah lingkungan bila kecepatan produksinya lebih cepat dari kecepatan degradasinya.

b. Bahan pencemar yang sukar terdegradasi atau lambat sekali terdegradasi (nondegradable pollutant), dapat menimbulkan masalah lingkungan yang cukup serius. Contohnya adalah jenis logam berat seperti timbal (Pb) dan merkuri.

Sedangkan senyawa-senyawa pencemar menurut keberadaannya dapat dibedakan menjadi :
a. Senyawa-senyawa yang secara alami ditemukan di alam dan jumlahnya (konsentrasinya) sangat tinggi, contohnya antara lain minyak mentah (hasil penyulingan), fosfat dan logam berat.
b. Senyawa xenobiotik yaitu senyawa kimia hasil rekayasa manusia yang sebelumnya tidak pernah ditemukan di alam, contohnya adalah pestisida, herbisida, plastik dan serat sintesis.
Dalam bioremediasi, lintasan biodegradasi berbagai senyawa kimia yang berbahaya dapat dimengerti berdasarkan lintasan mekanisme dari beberapa senyawa kimia alami seperti hidrokarbon, lignin, selulosa, dan hemiselulosa. Sebagian besar dari prosesnya, terutama tahap akhir metabolisme, umumnya berlangsung melalui proses yang sama. Polimer alami yang mendapat perhatian karena sukar terdegradasi di lingkungan adalah lignoselulosa (kayu) terutama bagian ligninnya.
Berikut ini merupakan beberapa jenis-jenis mikroorganisme yang berperan dalam mendegradasi polutan minyak bumi dan logam berat menjadi bahan yang tidak beracun.

1. Pencemaran minyak bumi
Bahan utama yang terkandung di dalam minyak bumi adalah hidrokarbon alifatik dan aromatik. Minyak bumi menghasilkan fraksi  hidrokarbon dari proses destilasi bertingkat. Apabila keberadaan minyak bumi berlebihan di alam, masing-masing fraksi minyak bumi akan menyebabkan pencemaran yang akan mengganggu kestabilan ekosistem yang dicemarinya. Di dalam minyak bumi terdapat dua macam komponen yang dibagi berdasarkan kemampuan mikroorganisme menguraikannya, yaitu komponen minyak bumi yang mudah diuraikan oleh mikroorganisme dan komponen yang sulit didegradasi oleh mikroorganisme.
Untuk Komponen minyak bumi yang mudah didegradasi oleh bakteri merupakan komponen terbesar dalam minyak bumi atau mendominasi, yaitu alkana yang bersifat lebih mudah larut dalam air dan terdifusi ke dalam membran sel bakteri. Jumlah bakteri yang mendegradasi komponen ini relatif banyak karena substratnya yang melimpah di dalam minyak bumi. Isolat bakteri pendegradasi komponen minyak bumi ini biasanya merupakan pengoksidasi alkana normal.

Untuk  Komponen minyak bumi yang sulit didegradasi merupakan komponen yang jumlahnya lebih kecil dibanding komponen yang mudah didegradasi. Hal ini menyebabkan bakteri pendegradasi komponen ini berjumlah lebih sedikit dan tumbuh lebih lambat karena kalah bersaing dengan pendegradasi alkana yang memiliki substrat lebih banyak. Isolasi bakteri ini biasanya memanfaatkan komponen minyak bumi yang masih ada setelah pertumbuhan lengkap bakteri pendegradasi komponen minyak bumi yang mudah didegradasi.
Beberapa bakteri dan fungi diketahui dapat digunakan untuk mendegradasi minyak bumi. Beberapa contoh bakteri yang selanjutnya disebut bakteri hidrokarbonuklastik yaitu bakteri yang dapat menguraikan komponen minyak bumi karena kemampuannya mengoksidasi hidrokarbon dan menjadikan hidrokarbon sebagai donor elektronnya. Adapun contoh dari bakteri hidrokarbonuklastik yaitu bakteri dari genus Achromobacter, Arthrobacter, Acinetobacter, Actinomyces, Aeromonas, Brevibacterium, Flavobacterium, Moraxella, Klebsiella, Xanthomyces dan Pseudomonas, Bacillus. Beberapa contoh fungi yang digunakan dalam biodegradasi minyak bumi adalah fungi dari genus Phanerochaete, Cunninghamella, Penicillium, Candida, Sp.orobolomyce, Cladosp.orium, Debaromyces, Fusarium, Hansenula, Rhodosp.oridium, Rhodoturula, Torulopsis, Trichoderma,  Trichosp.oron. Sejumlah bakteri seperti Pseudomonas aeruginosa, Acinetobacter calcoaceticus, Arthrobacter sp., Streptomyces viridans dan lain-lain menghasilkan senyawa biosurfaktan atau bioemulsi. Kemampuan bakteri dalam memproduksi biosurfaktan berkaitan dengan keberadaan enzim regulatori yang berperan dalam sintesis biosurfaktan. Biosurfaktan merupakan komponen mikroorganisme yang terdiri atas molekul hidrofobik dan hidrofilik, yang mampu mengikat molekul hidrokarbon tidak larut air dan mampu menurunkan tegangan permukaan. Selain itu biosurfaktan secara ekstraseluler menyebabkan emulsifikasi hidrokarbon sehingga mudah untuk didegradasi oleh bakteri. Biosurfaktan meningkatkan ketersediaan substrat yang tidak larut melalui beberapa mekanisme. Dengan adanya biosurfaktan, substrat yang berupa cairan akan teremulsi dibentuk menjadi misel-misel, dan menyebarkannya ke permukaan sel bakteri sehingga lebih mudah masuk ke dalam sel. Umumnya ada dua macam biosurfaktan yang dihasilkan bakteri yaitu :
·         Surfaktan dengan berat molekul rendah (seperti glikolipid, soforolipid, trehalosalipid, asam lemak dan fosfolipid) yang terdiri dari molekul hidrofobik dan hidrofilik. Kelompok ini bersifat aktif permukaan, ditandai dengan adanya penurunan tegangan permukaan medium cair.
·         Polimer dengan berat molekul besar, yang dikenal dengan bioemulsifier polisakarida amfifatik. Dalam medium cair, bioemulsifier ini mempengaruhi pembentukan emulsi serta kestabilannya dan tidak selalu menunjukkan penurunan tegangan permukaan medium.

·         Pelepasan biosurfaktan ini tergantung dari substrat hidrokarbon yang ada. Ada substrat (misalnya seperti pada pelumas) yang menyebabkan biosurfaktan hanya melekat pada permukaan membran sel, namun tidak diekskresikan ke dalam medium. Namun, ada beberapa substrat hidrokarbon (misal heksadekan) yang menyebabkan biosurfaktan juga dilepaskan ke dalam medium. Hal ini terjadi karena heksadekan menyebabkan sel bakteri lebih bersifat hidrofobik. Oleh karena itu, senyawa hidrokarbon pada komponen permukaan sel yang hidrofobik itu dapat menyebabkan sel tersebut kehilangan integritas struktural selnya sehingga melepaskan biosurfaktan untuk membran sel itu sendiri dan juga melepaskannya ke dalam medium.

Secara umum terdapat tiga cara transpor hidrokarbon ke dalam sel bakteri yaitu sebagai berikut:
a.       Interaksi sel dengan hidrokarbon yang terlarut dalam fase air. Pada kasus ini, umumnya rata-rata kelarutan hidrokarbon oleh proses fisika sangat rendah sehingga tidak dapat mendukung.
b.      Kontak langsung (perlekatan) sel dengan permukaan tetesan hidrokarbon yang lebih besar daripada sel mikroba. Pada kasus yang kedua ini, perlekatan dapat terjadi karena sel bakteri bersifat hidrofobik. Sel mikroba melekat pada permukaan tetesan hidrokarbon yang lebih besar daripada sel dan pengambilan substrat dilakukan dengan difusi atau transpor aktif. Perlekatan ini terjadi karena adanya biosurfaktan pada membran sel bakteri Pseudomonas.
c.       Interaksi sel dengan tetesan hidrokarbon yang telah teremulsi atau tersolubilisasi oleh bakteri. Pada kasus ini sel mikroba berinteraksi dengan partikel hidrokarbon yang lebih kecil daripada sel. Hidrokarbon dapat teremulsi dan tersolubilisasi dengan adanya biosurfaktan yang dilepaskan oleh bakteri Pseudomonas ke dalam medium.
Berikut ini merupakan jenis-jenis bakteri pendegradasi hidrokarbon pada minyak bumi yaitu:
1) Pseudomonas sp
Pseudomonas berbentuk batang dengan diameter 0,5 – 1 x 1,5 – 5,0 mikrometer. Bakteri ini merupakan organisme gram negatif yang motilitasnya dibantu oleh satu atau beberapa flagella yang terdapat pada bagian polar. Akan tetapi ada juga yang hampir tidak mampu bergerak. Bersifat aerobik obligat yaitu oksigen berfungsi sebagai terminal elektron aseptor pada proses metabolismenya. Kebanyakan sp.esies ini tidak bisa hidup pada kondisi asam pada pH 4,5 dan tidak memerlukan bahan-bahan organik. Bersifat oksidasi negatif atau positif, katalase positif dan kemoorganotropik. Dapat menggunakan H2 dan CO sebagai sumber energi. Bakteri pseudomonas yang umum digunakan sebagai pendegradasi hidrokarbon antara lain Pseudomonas aeruginosa, Pseudomonas stutzeri, dan Pseudomonas diminuta.

Salah satu faktor yang sering membatasi kemampuan bakteri Pseudomonas dalam mendegradasi senyawa hidrokarbon adalah sifat kelarutannya yang rendah, sehingga sulit mencapai sel bakteri. Adapun mekanisme degradasi hidrokarbon di dalam sel bakteri Pseudomonas yaitu:
o   Mekanisme degradasi hidrokarbon alifatik
Pseudomonas menggunakan hidrokarbon tersebut untuk pertumbuhannya. Penggunaan hidrokarbon alifatik jenuh merupakan proses aerobik (menggunakan oksigen). Tanpa adanya O2, hidrokarbon ini tidak didegradasi. Langkah pendegradasian hidrokarbon alifatik jenuh oleh Pseudomonas meliputi oksidasi molekuler (O2) sebagai sumber reaktan dan penggabungan satu atom oksigen ke dalam hidrokarbon teroksidasi.

o   Mekanisme degradasi hidrokarbon aromatik
Banyak senyawa ini digunakan sebagai donor elektron secara aerobik oleh bakteri Pseudomonas. Degradasi senyawa hidrokarbon aromatik disandikan dalam plasmid atau kromosom oleh gen xy/E. Gen ini berperan dalam produksi enzim katekol 2,3-dioksigenase. Metabolisme senyawa ini oleh bakteri diawali dengan pembentukan Protocatechuate atau catechol atau senyawa yang secara struktur berhubungan dengan senyawa ini. Kedua senyawa ini selanjutnya didegradasi oleh enzim katekol 2,3-dioksigenase menjadi senyawa yang dapat masuk ke dalam siklus Krebs (siklus asam sitrat), yaitu suksinat, asetil KoA, dan piruvat.
2) Arthrobacter sp.
Pada kultur yang masih muda Arthrobacter berbentuk batang yang tidak teratur 0,8 – 1,2 x 1 – 8  mikrometer. Pada proses pertumbuhan batang segmentasinya berbentuk cocus kecil dengan diameter 0,6 – 1 mikrometer. Gram positif, tidak berspora, tidak suka asam, aerobik, kemoorganotropik. Memproduksi sedikit atau tidak sama sekali asam dan gas yang berasal dari glukosa atau karbohidrat lainnya. Katalase positif, temperatur optimum 25 – 30oC.

3) Acinetobacter sp.

Memiliki bentuk seperti batang dengan diameter 0,9 – 1,6 mikrometer dan panjang 1,5- 2,5 mikrometer. Berbentuk bulat panjang pada fase stasioner pertumbuhannya. Bakteri ini tidak dapat membentuk spora. Tipe selnya adalah gram negatif, tetapi sulit untuk diwarnai. Bakteri ini bersifat aerobik, sangat memerlukan oksigen sebagai terminal elektron pada metabolisme. Semua tipe bakteri ini tumbuh pada suhu 20-300 C, dan tumbuh optimum pada suhu 33-350 C. Bersifat oksidasi negatif dan katalase positif. Bakteri ini memiliki kemampuan untuk menggunakan rantai hidrokarbon sebagai sumber nutrisi, sehingga mampu meremidiasi tanah yang tercemar oleh minyak. Bakteri ini bisa menggunakan amonium dan garam nitrit sebagai sumber nitrogen, akan tetapi tidak memiliki pengaruh yang signifikan. D-glukosa adalah satu-satunya golongan heksosa yang bisa digunakan oleh bakteri ini, sedangkan pentosa D-ribosa, D-silosa, dan L-arabinosa juga bisa digunakan sebagai sumber karbon oleh beberapa strain.
4) Bacillus sp.

Umumnya bakteri ini merupakan mikroorganisme sel tunggal, berbentuk batang pendek (biasanya rantai panjang). Mempunyai ukuran lebar 1,0-1,2 mm dan panjang 3-5 mm. Merupakan bakteri gram positif dan bersifat aerob. Adapun suhu pertumbuhan maksimumnya yaitu 30-50oC dan minimumnya 5-20oC dengan pH pertumbuhan 4,3-9,3. Bakteri ini mempunyai kemampuan dalam mendegradasi minyak bumi, dimana bakteri ini menggunakan minyak bumi sebagai satu-satunya sumber karbon untuk menghasilkan energi dan pertumbuhannya. Pada konsentrasi yang rendah, bakteri ini dapat merombak hidrokarbon minyak bumi dengan cepat.  Jenis Bacillus sp. yang umumnya digunakan seperti Bacillus subtilis, Bacillus cereus, Bacillus laterospor.

Selain dari golongan bakteri, mikroba pendegradasi hidrokarbon juga dapat dilakukan oleh fungi. Fungi pendegradasi hidrokarbon  umumnya  berasal dari genus Phanerochaete, Cunninghamella, Penicillium, Candida, Sporobolomyces, Cladosporium. Jamur dari genus ini mendegradasi hidrokarbon polisiklik aromatik. Jamur Phanerochaete chrysosporium mampu mendegradasi berbagai senyawa hidrofobik pencemar tanah yang persisten. Adapun oksidasi dan pelarutan hidrokarbon polisiklik aromatik oleh Phanerochaete chrysosporium menggunakan enzim lignin peroksidase.  Bila terdapat H2O2, enzim lignin peroksidase yang dihasilkan akan menarik satu elektron dari PAH yang selanjutnya membentuk senyawa kuinon yang merupakan hasil metabolisme. Cincin benzena yang sudah terlepas dari PAH selanjutnya dioksidasi menjadi molekul-molekul lain dan digunakan oleh sel mikroba sebagai sumber energi misalnya CO2.

Jamur dari golongan Deuteromycota (Aspergillus niger, Penicillium glabrum, P. janthinellum, Zygomycete, Cunninghamella elegans ), Basidiomycetes (Crinipellis stipitaria) diketahui juga dapat mendegradasi hidrokarbon polisiklik aromatik. Sistem enzim monooksigenase Sitokrom P-450 pada jamur ini memiliki kemiripan dengan sistem yang dimiliki mamalia.  Adapun langkah-langkahnya yaitu pembentukan monofenol, difenol, dihidrodiol dan quinon dan terbentuk gugus tambahan yang larut air (misalnya sulfat, glukuronida, ksilosida, glukosida). Senyawa ini merupakan hasil detoksikasi pada jamur dan mamalia.




2. Pencemaran Logam Berat
Secara umum diketahui bahwa logam berat merupakan unsur yang berbahaya di permukaan bumi, sehingga kontaminasi logam berat di lingkungan merupakan masalah yang besar. Persoalan spesifik logam berat di lingkungan terutama akumulasinya sampai pada rantai makanan dan keberadaannya di alam menyebabkan keracunan terhadap tanah, udara maupun air. Bahan pencemar senyawa anorganik/mineral misalnya logam-logam berat seperti merkuri (Hg), kadmium (Cd), Timah hitam (pb), tembaga (Cu), timbal (Pb), dan  garam-garam anorganik. Bahan pencemar berupa logam-logam berat yang masuk ke dalam tubuh biasanya melalui makanan dan dapat tertimbun dalam organ-organ tubuh.  Mikroba memerlukan logam sebagai fungsi struktural dan katalis serta sebagai donor atau reseptor elektron dalam metabolisme energi. Kemampuan interaksi mikroba terhadap logam antara lain :
·           Mengikat ion logam yang ada di lingkungan eksternal pada permukaan sel serta membawanya ke dalam sel untuk berbagai fungsi sel. Contohnya bakteri Thiobaccilus sp. Mampu menggunakan Fe dalam aktivasi enzim format dehidrogenase pada sitokrom.
·           Menggunakan logam sebagai donor atau akseptor elektron dalam metabolisme energi.
·           Mengikat logam sebagai kation pada permukaan sel yang bermuatan negatif dalam proses yang disebut biosorpsi.
·           Mikroba mengurangi bahaya pencemaran logam berat dapat dilakukan dengan cara detoksifikasi, biohidrometakurgi, bioleaching, dan bioakumulasi.
§  Detoksifikasi (biosorpsi) pada prinsipnya mengubah ion logam berat yang bersifat toksik menjadi senyawa yang bersifat tidak toksik. Proses ini umumnya berlangsung dalam kondisi anaerob dan memanfaatkan senyawa kimia sebagai akseptor elektron.
§  Biohidrometalurgi pada prinsipnya mengubah ion logam yang terikat pada suatu senyawa yang tidak dapat larut dalam air menjadi senyawa yang dapat larut dalam air.
§  Bioleaching merupakan aktivitas mikroba untuk melarutkan logam berat dari senyawa yang mengikatnya dalam bentuk ion bebas. Biasanya mikroba menghasilkan asam dan senyawa pelarut untuk membebaskan ion logam dari senyawa pengikatnya. Proses ini biasanya langsung diikuti dengan akumulasi ion logam.
§  Bioakumulasi merupakan interaksi mikroba dan ion-ion logam yang berhubungan dengan lintasan metabolism.



Interaksi mikroba dengan logam di alam adalah imobilisasi logam dari fase larut menjadi tidak  atau sedikit larut sehingga mudah dipisahkan. Adapun contoh mikroba  pendegradasi  logam yaitu :
1)      Enterobacter cloacae dan Pseudomonas fluorescens mampu mengubah Cr (VI) menjadi Cr (III) dengan bantuan senyawa-senyawa hasil metabolisme, misalnya hidrogen sulfida, asam askorbat, glutathion, sistein, dll.
2)      Desulfovibrio sp. membentuk senyawa sulfida dengan memanfaatkan hidrogen sulfida yang dibebaskan untuk mengatasi pencemaran logam Cu.
3)      Desulfuromonas acetoxidans merupakan bakteri anerobik laut yang menggunakan sulfur dan besi sebagai penerima elektron untuk mengoksidasi molekul organik dalam endapan yang bisa menghasilkan energi.
4)      Bakteri pereduksi sulfat contohnya Desulfotomaculum sp. Dalam melakukan reduksi sulfat, bakteri ini menggunakan sulfat sebagai sumber energi yaitu sebagai akseptor elektron dan menggunakan bahan organik sebagai sumber karbon. Karbon tersebut  selain berperan sebagai sumber donor elektron dalam metabolismenya juga merupakan bahan penyusun selnya. Adapun reaksi reduksi sulfat oleh bakteri ini adalah sebagai berikut.
5)      Bakteri belerang, khususnya Thiobacillus ferroxidans banyak berperan pada logam-logam dalam bentuk senyawa sulfida untuk menghasilkan senyawa sulfat.
6)      Mikroalga contohnya Spirulina sp., merupakan salah satu jenis alga dengan sel tunggal yang termasuk dalam kelas Cyanophyceae. Sel Spirulina sp. berbentuk silindris, memiliki dinding sel tipis. Alga ini mempunyai kemampuan yang tinggi untuk mengikat ion-ion logam dari larutan dan mengadsorpsi logam berat karena di dalam alga terdapat gugus fungsi yang dapat melakukan pengikatan dengan ion logam. Gugus fungsi tersebut terutama gugus karboksil, hidroksil, amina, sulfudril imadazol, sulfat dan sulfonat yang terdapat dalam dinding sel dalam sitoplasma.
7)      Jamur Saccharomyces cerevisiae dan Candida sp. dapat mengakumulasikan Pb dari dalam perairan, Citrobacter dan Rhizopus arrhizus memiliki kemampuan menyerap uranium. Penggunaan jamur mikoriza juga telah diketahui dapat meningkatkan serapan logam dan menghindarkan tanaman dari keracunan logam berat.


Faktor-faktor yang mempengaruhi Bioremediasi.
Keberhasilan proses biodegradasi banyak ditentukan oleh aktivitas enzim. Dengan demikian mikroorganisme yang berpotensi menghasilkan enzim pendegradasi hidrokarbon perlu dioptimalkan aktivitasnya dengan pengaturan kondisi dan penambahan suplemen yang sesuai. Dalam hal ini perlu diperhatikan faktor-faktor lingkungan yang mempengaruhi proses bioremediasi, yang meliputi kondisi tanah, temperature, oksigen, dan nutrient yang tersedia.
a)    Lingkungan/Tanah

Proses biodegradasi memerlukan tipe tanah yang dapat mendukung kelancaran aliran nutrient, enzim-enzim mikrobial dan air. Terhentinya aliran tersebut akan mengakibatkan terbentuknya kondisi anaerob sehingga proses biodegradasi aerobik menjadi tidak efektif. Karakteristik tanah yang cocok untuk bioremediasi in situ adalah mengandung butiran pasir ataupun kerikil kasar sehingga dispersi oksigen dan nutrient dapat berlangsung dengan baik. Kelembaban tanah juga penting untuk menjamin kelancaran sirkulasi nutrien dan substrat di dalam tanah.

b)   Temperatur
Temperatur yang optimal untuk degradasi hidrokaron adalah 30-40˚C. Ladislao, et. al. (2007) mengatakan bahwa temperatur yang digunakan pada suhu 38˚C bukan pilihan yang valid karena tidak sesuai dengan kondisi di Inggris untuk mengontrol mikroorganisme patogen. Pada temperatur yang rendah, viskositas minyak akan meningkat mengakibatkan volatilitas alkana rantai pendek yang bersifat toksik menurun dan kelarutannya di air akan meningkat sehingga proses biodegradasi akan terhambat. Suhu sangat berpengaruh terhadap lokasi tempat dilaksanakannya bioremediasi

c)    Oksigen
Langkah awal katabolisme senyawa hidrokaron oleh bakteri maupun kapang adalah oksidasi substrat dengan katalis enzim oksidase, dengan demikian tersedianya oksigen merupakan syarat keberhasilan degradasi hidrokarbon minyak. Ketersediaan oksigen di tanah tergantung pada (a) kecepatan konsumsi oleh mikroorganisme tanah, (b) tipe tanah dan (c) kehadiran substrat lain yang juga bereaksi dengan oksigen. Terbatasnya oksigen, merupakan salah satu faktor pembatas dalam biodegradasi hidrokarbon minyak

d)   pH.

Pada tanah umumnya merupakan lingkungan asam, alkali sangat jarang namun ada yang melaporkan pada pH 11. Penyesuaian pH dari 4,5 menjadi 7,4 dengan penambahan kapur meningkatkan penguraian minyak menjadi dua kali. Penyesuaian pH dapat merubah kelarutan, bioavailabilitas, bentuk senyawa kimia polutan, dan makro & mikro nutrien. Ketersediaan Ca, Mg, Na, K, NH4+, N dan P akan turun, sedangkan penurunan pH menurunkan ketersediaan NO3- dan Cl- . Cendawan yang lebih dikenal tahan terhadap asam akan lebih berperan dibandingkan bakteri asam.

e)    Kadar H2O dan karakter geologi.
Kadar air dan bentuk poros tanah berpengaruh pada bioremediasi. Nilai aktivitas air dibutuhkan utk pertumbuhan mikroba berkisar 0.9 - 1.0, umumnya kadar air 50-60%. Bioremediasi lebih berhasil pada tanah yang poros.

f)    Keberadaan zat nutrisi.
Baik pada in situ & ex situ. Bila tanah yang dipergunakan bekas pertanian mungkin tak perlu ditambah zat nutrisi. Untuk hidrokarbon ditambah nitrogen & fosfor, dapat pula dengan makro & mikro nutrisi yang lain. Mikroorganisme memerlukan nutrisi sebagai sumber karbon, energy dan keseimbangan metabolisme sel. Dalam penanganan limbah minyak bumi biasanya dilakukan penambahan nutrisi antara lain sumber nitrogen dan fosfor sehingga proses degradasi oleh mikroorganisme berlangsung lebih cepat dan pertumbuhannya meningkat.

g)   Interaksi antar Polusi.
Fenomena lain yang juga perlu mendapatkan perhatian dalam mengoptimalkan aktivitas mikroorganisme untuk bioremediasi adalah interaksi antara beberapa galur mikroorganisme di lingkungannya. Salah satu bentuknya adalah kometabolisme. Kometabolisme merupakan proses transformasi senyawa secara tidak langsung sehingga tidak ada energy yang dihasilkan.
Kelebihan
Kelebihan teknologi ini adalah:

      1. Relatif lebih ramah lingkungan,
      2. Biaya penanganan yang relatif lebih murah
      3. Bersifat fleksibel.
1)   Proses pelaksanaan dapat dilakukan langsung di daerah tersebut dengan lahan yang sempit sekalipun.
2)   Mengubah pollutant bukan hanya memindahkannya.
3)   Proses degradasi dapat dilaksanakan dalam jangka waktu yang cepat.
4)   Bioremediasi sangat aman digunakan karena menggunakan mikroba yang secara alamiah sudah ada dilingkungan (tanah).
5)   Bioremediasi tidak menggunakan/menambahkan bahan kimia berbahaya.
6)   Teknik pengolahannya mudah diterapkan dan murah biaya.
Kekurangan bioremediasi sebagai berikut :
1)   Tidak semua bahan kimia dapat diolahsecara bioremediasi.
2)   Membutuhkan pemantauan yang ekstensif .
3)   Membutuhkan lokasi tertentu.
4)   Pengotornya bersifat toksik
5)   Padat ilmiah
6)   Berpotensi menghasilkan produk yangtidak dikenal
7)   Dapat digabung dengan teknik pengolahan lain
8)   Persepsi sebagai teknologi yang belum teruji

Teknik Dasar

Ada 4 teknik dasar yang biasa digunakan dalam bioremediasi:

1.      Stimulasi aktivitas mikroorganisme asli (di lokasi tercemar) dengan penambahan nutrien, pengaturan kondisi redoks, optimasi pH, dsb

2.      Inokulasi (penanaman) mikroorganisme di lokasi tercemar, yaitu mikroorganisme yang memiliki kemampuan biotransformasi khusus

3.      Penerapan immobilized enzymes

4.      Penggunaan tanaman (phytoremediation) untuk menghilangkan atau mengubah pencemar.


Kunci sukses
Kunci sukses bioremediasi adalah:
1. Dilakukan karakterisasi lahan (site characterization) :

·       sifat dan struktur geologis lapisan tanah,
·       lokasi sumber pencemar
·       perkiraan banyaknya hidrokarbon yang terlepas dalam tanah.
·       sifat-sifat lingkungan tanah : derajat keasaman (pH), temperatur tanah,  kelembaban hingga kandungan kimia yang sudah ada, kandungan nutrisi, ketersediaan oksigen.
·       mengetahui keberadaan dan jenis mikroba yang ada dalam tanah.

2. Treatability study.
Sesudah data terkumpul, kita bisa melakukan modeling untuk menduga pola distribusi dan tingkat pencemarannya. Salah satu teknik modeling yang kini banyak dipakai adalah bioplume modeling dari US-EPA. Di sini, diperhitungkan pula faktor perubahan karakteristik pencemar akibat reaksi biologis, fisika dan kimia yang dialami di dalam tanah.
Rekayasa genetika terkadang juga perlu jika mikroba alamiah tak memuaskan hasilnya.
Treatability study juga akan menyimpulkan apakah reaksi dapat berlangsung secara aerobik atau anaerobik.
Teknologi genetik molekular sangat penting untuk mengidentifikasi gen ”yang mengkode enzim yang terkait pada bioremediasi. Karakterisasi dari gen-gen yang bersangkutan dapat meningkatkan pemahaman kita tentang bagaimana mikroba” memodifikasi polutan beracun menjadi tidak berbahaya.




Peluang-peluang bioremediasi
Peluang kedepan adalah pengembangan green business yang berbasis pada teknologi bioremediasi dengan :
1. System One Top Solution (close system) dan
2. Dengan pendekatan multi-proses remediation technologies, artinya pemulihan (remediasi) kondisi lingkungan yang terdegradasi dapat diteruskan sampai kepada kondisi lingkungan seperti kondisi awal sebelum Kontaminasi ataupun pencemaran terjadi.
Usaha mencapai total grenning program ini dapat dilanjutkan dengan rehabilitasi lahan dengan melakukan kegiatan phytoremediasi dan penghijauan (vegetation establishement) untuk lebih efektif dalam mereduksi, mengkontrol atau bahkan mengeliminasi hasil bioremediasi kepada tingkatan yang sangat aman lagi buat lingkungan. Biaya teknologi Bioremediasi di Indonesia berada didalam kisaran 20-200 USD per meter kubik bahan yang akan diolah (tergantung dari jumlah dan konsentrasi limbah awalserta metoda aplikasi), jauh lebih murah dari harga yang harus dikeluarkan dengan teknologi lain seperti incinerasi dan soil washing (150-600 USD). Bagi industri, penanganan lahan tercemar dengan teknologi bioremediasi memberikan nilai strategis :
Untuk Effisiensi, kesadaran bahwa banyak sumber daya alam kita adalah non-renewable resources (ex. minyak dan gas), dengan teknologi ramah lingkungan yang cost-effective (seperti bioremediasi) akan secara langsung berimplikasi kepada pengurangan biaya pengolahan.
Untuk Lingkungan, ketika suatu perusahaan begitu konsern dengan lingkungan, diharapkan akan  terbentuk sikap positif dari pasar yang pada akhirnya seiring dengan kesadaran lingkungan masyarakat akan mengkondisikan masyarakat untuk lebih memilih “green Industry” dibanding industri yang berlabel “red industri” atau mungkin “black industry”, evaluasi kinerja industri dalam pengelolaan lingkungan hidup (Proper) sudah mulai dilakukan oleh pemerintah (KLH), diharapkan kedepan, akan terus dikembangkan menjadi pemberian sertifikasi ISO 14001, hasilnya adalah perluasan pasar dengan "greening image".
Untuk Environmental Compliance, ketaatan terhadap peraturan lingkungan menunjukan bentuk integrasi total dan aktif dari industri terhadap regulasi yang dibangun oleh pemerintah untuk kepentingan masyarakat luas. Sikap ini juga akan memberi penilai positif dari masyarakat selaku konsumen terhadap perusahaan tertentu.


Pemerintah, melalui Kementrian Lingungan Hidup, membuat  Payung hukum yang mengatur standar baku kegiatan Bioremediasi untuk mengatasi permasalahan lingkungan akibat kegiatan pertambangan dan perminyakan serta bentuk pencemaran lainnya (logam berat dan pestisida) disusun dan tertuang didalam:
            Keputusan Menteri Negara Lingkungan Hidup No.128 tahun 2003 tentang tatacara dan persyaratan teknis dan pengelolaan limbah minyak bumi dan tanah  terkontaminasi oleh minyak bumi secara biologis (Bioremediasi). Di masa yang akan datang, mikroorganisme rekombinan dapat menyediakan cara yang efektif untuk mengurangi senyawa-senyawa kimiawi yang berbahaya di lingkungan kita. Bagaimanapun, pendekatan itu membutuhkan penelitian yang hati-hati berkaitan dengan mikroorganisme rekombinan tersebut, apakah efektif dalam mengurangi polutan, dan apakah aman saat mikroorganisme itu dilepaskan ke lingkungan.


Sumber:
http://nopi-nurpatimah.blogspot.com/2011/10/bioremediasi.html
http://idafitriani96.blogspot.com/2013/01/makalah-presentasi-mikrobiologi_3.html
http://biotekbiologi.blogspot.com/2013/12/bioremediasi.html?m=1

No comments:

Post a Comment